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A B S T R A C T

There exist several ways to define a reversible process and distinguish it from an irreversible one.
From the need of practically explaining a reversible process, the concept of a quasi-static trans-
formation is primarily introduced; otherwise, no special significance is attached to such a process.
We consider here all these three processes and scrutinize their relative merits in the light of preva-
lent definitions of reversibility. Two simple processes, viz., the isochoric and isobaric ones, are
then put forward that are found to be independently quasi-static on their own right, but not strictly
reversible; they are not irreversible either. The importance of these two specific processes in the
p-V diagrams and of reversible processes in the T-S diagrams are separately delineated. One
mol of an ideal gas is chosen as the working substance everywhere to keep all calculations at
the simplest level.
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1. Introduction

A thermodynamic process is characterized by changes of
state functions. The p-V diagram is particularly useful for gases.
If p = 0 and V = 0, we conclude that a state has remained
unchanged. However, a more general viewpoint, valid not just
for gases, exists. From the first and second laws, we obtain U
and S as two such functions. So, naturally, we are led to con-
clude that if both U and S are zero, a state has not changed.
Auxiliary functions like A and G do not qualify in this regard
because they are useful only for isothermal processes. The case
of H is not independently important either; it requires know-
ledge of U.

Once we consider a process, it is imperative to judge if it is
reversible or not. For a reversible process (RP), variations are
continuous and calculations of changes in thermodynamic func-
tions are simple. Practical implementation of an RP is conceived
in terms of a quasi-static process (QSP), requiring an infinite
number of heat reservoirs at intermediate points to keep the
system infinitesimally close to equilibrium at each point during
the entire transition. Indeed, this is how a QSP is introduced in a
thermodynamic context [1]. It’s more a concept than reality. One
may notice a close correspondence of RP-QSP with the notion
of ‘integration as the limit of a sum’. On the other hand, an irre-
versible process (IP) is associated usually with sudden changes,

may well be in finite steps, to move from one equilibrium state to
another in a discontinuous fashion. At any intermediate stage,
the system is in a non-equilibrium state. This is why, for any IP,
we look for ‘equivalent reversible paths’ to calculate changes in
thermodynamic functions.

The above discussion makes one point quite clear. An IP is
often distinctly different from an RP or a QSP. But, a few other
queries are left open. Specifically, the following questions arise
immediately. (i) Does any QSP qualify as RP? (ii) Is the converse
true? (iii) What does an RP strictly mean? Are all the definitions
of reversibility pristine? (iv) Are there situations where a QSP
can have an identity of its own, and it is neither an RP nor an IP?

Several attempts were made from time to time to understand
questions like whether a QSP may also be an IP [2], how a QSP
differs from an RP [3], how S calculations [4] or entropy
productions [5] are linked with RP. Usually, we associate a QSP
with a slow process [6]. But, slow processes are not necessarily
reversible [7]. In addition, dissipation, if there is any, may be a
reason behind an IP [1, 7]. In the particular case of non-isothermal
heat transfer processes, we have earlier analyzed point (i) in
great detail [8] and arrived at a negative conclusion. Primarily,
this is due to the work involved in the on-off switches connected
to an infinite number of heat reservoirs with which the system
has to thermally equilibrate at different instants, and such work
term is left outside the scope of thermodynamics. Here, however,
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we shall choose a few much simpler examples, without going
deeper into the inner mechanisms, to decipher how a QSP may
visibly differ from an RP. As regards point (i), the same negative
conclusion follows here too. We intend to also establish that the
answer to point (ii) is always in the affirmative. Various existing
definitions of an RP will be taken up to ascertain the status of
each one separately in course of discussions on point (iii). Finally,
we explore cases where a QSP does have an independent status,
in the context of point (iv), highlighting isochoric and isobaric
processes in particular.

Our organization is as follows. In Sec. 2, we point out vari-
ous standard definitions of reversibility with brief explanations.
Sec. 3 is devoted to studies on isochoric and isobaric QSP in
relation to RP and IP. Work, S (system) and S (universe)
calculations are given primary importance here. The bearing of
such data on the characterization of an RP is noted. Necessary
amendments are made. That the isobar-isochore pair of QSP,
mutually perpendicular in the p-V plane, can act independently
to easily calculate S for any transformation is confirmed in Sec.
4. Finally, Sec. 5 summarizes the major conclusions of the whole
endeavor.

2. Criterion of a reversible process

We shall throughout follow the older convention [9] and stick
to the prevalent definitions (D) of an RP as the one that satisfies
either (or all!) of the following:

D-I. Work done by (on) the system is maximum (minimum).
D-II. Heat (Q ) and work (W ) terms remain same in magni-

tude but opposite in sign if the process is reversed, and the
reverse process is also acceptable or practicable.

D-III. S (system) = dQ / T.
D-IV. S (universe) = S (system) + S (surroundings) = 0.

Keeping aside the fact that all natural processes are irre-
versible, we do not wish to invoke any dissipation anywhere as
well. The latter will ensure simplicity in the whole endeavor. Also,
henceforth, we shall choose here one-step IP only. Now, turning
attention to the definitions, we note that D-I has been elaborated
at length elsewhere [9] and needs no further clarification. D-II
plainly means that U changes sign when a process is reversed,
where U = Q – W. But, this does not preclude the possibility
that U = Q – W  (Q  = Q +  , W  = W + ). Only if  = 0, the
phrase ‘same in magnitude but opposite in sign’ would be obeyed;
it’s true for an RP, but not for an IP. So, cases with  0 usually
account for (but see below) alternative paths, and are important
in IP. In addition, there is something else in D-II. Consider a non-

Carnot engine that takes up Q1 heat from a source at tempera-
ture T1, performs work W and transfers Q2 heat to a sink kept at
temperature T2. By merely changing signs of the work and heat
terms, we do not get an acceptable pump. This is taken care of
in the extra clause. The definition D-III follows from the definition
of entropy [10] as

dS = dQrev / T . (1)

For an RP, therefore, the subscript is unnecessary; for a finite
change, we need additionally an integration step. Hence, an RP
should obey D-III:

S = dQ  / T . (2)

On the other hand, definition D-IV forms another part of the
second law relevant to an RP. It actually goes as

S (universe) = S (system) + S (surroundings)  0, (3)

where the equality refers to an RP, the other to an IP.

3. Selected examples

We like to choose two examples here. For a closed system,
the first one sought an answer to the question of ‘reversible work’
for a process with V = 0 (see Levine [10]). Indeed, the idea
behind this whole article has arisen from this particular problem.
An extension to the case of p = 0 is subsequently treated here.
In course of the analysis on QSP, we have found it more
convenient to consider isochoric (dV = 0) and isobaric (dp = 0)
processes respectively, replacing just V = 0 and p = 0 that
are characteristic of IP. Our choices are thus restrictive, but
certainly appropriate in the QSP context.

3.1. Two speci fic processes

Let us consider the isochoric process from A to B1 in Fig. 1.
Since V = 0, no work is done. No straight line in the p-V diagram
will ever correspond to any RP for a gas; we have only reversible
isotherms and adiabats, both well-defined curves. As the final
state has a higher pressure, it will have a higher temperature
too. Therefore, we choose a reversible adiabatic compression
path (A to C) and next a reversible isothermal expansion path (C
to B1) to calculate the overall ‘reversible work’. Here, area (S)
under ACB1A [S (ACB1A)] accounts for the same, and it is
positive. C is an intermediate point where the two reversible paths
intersect.

We next choose the isobaric process from A to B2 in Fig. 1.
Since V  0, some work is done. This irreversible work (one-
step) is defined by S (AB2O3O2A). As usual, being a straight line
in the p-V diagram, it cannot represent the ‘reversible work’. Here
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too, the final state has a higher volume, and so it will have a
higher temperature. Therefore, we choose a reversible adiabatic
compression path (A to C) and subsequently a reversible
isothermal expansion path (C to B2) to calculate the ‘reversible
work’. Note that, point C in this case may not refer to the earlier
one. It is only a symbolic representation. Here, area  ACB2A [S
(ACB2A)] denotes the extra work due to reversibility and it is
again positive.

In both the above cases, therefore, D-I is satisfied, i.e.,
W (R) > W (QS) = W (IR) [cf. Fig. 1].

3.2. A few characteristics

Certain features, common to both the above two processes,
are now worth mentioning. Clearly, these are not RP; in terms of
work, they may be called either IP or QSP (dotted line). However,
there is a subtle difference (see below) in respect of certain other
properties. When we only impose V = 0 or p = 0, it does not
follow that the process is isochoric (dV = 0) or isobaric (dp = 0).
The latter is more restrictive, proceeds infinitesimally, and hence
certainly means a QSP, but not an IP. However, the work term
alone cannot distinguish such a QSP from a one-step IP. On the
other hand, U has to remain same if initial and final points are
fixed. This means, Q (R) > Q (QS) = Q (IR) is true in either
example.

Consider now the reverse process (B1 to A or B2 to A). The

W term changes sign in either case, so does U. Hence, Q  has
to change its sign. This is important for two reasons. (i) It implies
that definition D-II should also apply to a QSP. (ii) There is yet
another issue. If we trace back the reversible path in Fig. 1, one
notes that D-I is in trouble; minimum work is not done on the
system. Rather, it is maximum in each situation. This calls for a
fresh investigation.

To circumvent the above problem, we need indeed another
alternative reversible path. Fortunately such a path is available
for each problem. Fig. 2 shows such paths. The isotherm and
adiabat meet now at the intermediate point D. Corresponding
work terms are presented in the figure. Here we do find that a
positive (and maximum) work is done by the system, in accor-
dance with D-I.

The choice of the proper RP route to be followed depends
on the temperatures of the states under consideration. If we go
from a lower T to a higher T point, an adiabatic compression
with a subsequent isothermal expansion would be appropriate.
In case of the converse transformation, an adiabatic expansion
followed by an isothermal compression would work desirably.
To be wise after the events, the above simple rules of thumb
may be kept in mind.

3.3. Preliminary remarks on reversibil ity

The discussion so far has made two points quite clear. Defi-

Fig. 1. Isochoric (A to B1) and isobaric (A to B2) processes are shown in the p-V diagram. The red line refers to a reversible isothermal process and the
blue one to a reversible adiabatic process. The work done W by the system via irreversible [W (IR)], quasi-static [W (QS)] and reversible [W (R)]
paths in each case are pointed out in the figure. S (XYZX) symbolically represents the area under the curve XYZX.
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nitions D-I and D-II need some amendments. First, if there is
one intermediate point (C or D), there exist two reversible paths;
along one path, D-I is obeyed (e.g., A to B1 or B2, see Fig. 1)
along the other, D-I is also obeyed (e.g., B1 or B2 to A, see Fig.
2). Thus, wherever multiple reversible paths are available, we
should choose the specific one that respects D-I, and such a
path can always be found. Second, we need to improve D-II in
two respects: (i) As it stands, D-II applies equally well to QSP
beyond doubt. Both isochoric and isobaric processes lend cre-
dence in this issue. Therefore D-II cannot differentiate a QSP
from an RP. (ii) If a process is reversed, the difference U of Q
and W terms remains same. We have already seen, W terms
differ via paths ACB (Fig. 1) and BDA (Fig. 2), where B stands
either for B1 or B2. The major point here is that, path BCA is
surely reversible, but with regard to the B to A transition, we
should choose route BDA that satisfies D-I. Otherwise, no doubt
should be cast on the viability or acceptability of either process.
It is just that we lose the identity of a reversible path as the only
one that can be traced back to undo the course. But, isochoric
and isobaric QSP do not support any alternative paths.

The next natural query is the following: If multiple reversible
paths exist, how many of them should we need to consider?
Here, the associated figures reveal that there are two routes
with one intermediate point (C or D). That these are all, and

nothing is left out of consideration, may be appreciated once we
look at Fig. 3. This T-S plot tells us that, given two states at A
and B (again, B means either B1 or B2), one has really two options,
and no more, to reach reversibly from one of them to the other,
provided there is just one intermediate point. The area under
this curve signifies the heat Q involved in the process. Path
ACB, first adiabatic (blue) and then isothermal (red), is akin to
Fig. 1; kinship of the other route BDA with Fig. 2 is obvious. If we
compare paths ACB and ADB, the heat absorbed by the system,
and hence the work done, is greater in the former case by an
amount TS, which is here the rectangular area ADBC. It also
shows, a single RP (no intermediate point) necessitates either
T = 0 (an isotherm), or S = 0 (an adiabat). The conclusion
corresponds to that in the p-V diagram as well.

3.4. Entropy changes

Let us note that, two other definitions of reversibility [viz., D-
III and D-IV] rest solely on entropy changes. Therefore, we now
concentrate on this aspect. Indeed, the use of QSP is most
rewarding in S calculations for the system, to be outlined below.
Traditionally, the change of any thermodynamic property is
normally calculated via ‘equivalent reversible paths’. So, as per
prescription, we should employ the RP route (see Fig. 1).

Fig. 2. Reverse processes of those depicted in Fig. 1 are presented in relation to reversible isotherm (red line) and reversible adiabat (blue line). Here, B1
to A is isochoric and B2 to A is isobaric. The work done W by the system via irreversible [W (IR)], quasi-static [W (QS)] and reversible [W (R)] paths
in each case are pointed out in the figure. The significance of S remains same as that in Fig. 1.
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B2 dQ rev
S =   ———

A T

B
P B AA

dH C T T
T

2

2
ln ( / )  P B AC V V

2
ln ( / ) (7)

It is imperative now to check if the calculations of S on the
basis of (4) and (6), or (5) and (7), agree. The following subsec-
tion will be devoted to this task. Let us note in passing that (6) or
(7) does not apply to an IP where, by definition, we are not per-
mitted to impose dV = 0, or dp = 0, respectively. In this respect,
such a QSP differs from the corresponding IP.

3.5. Preliminary calculations

We start with point A in Fig. 1 with (p, V, T) coordinates as (1,
1, R–1) where R is the universal gas constant in unit commensu-
rate with the same of p and V. Suppose the isochoric process to
B1 changes coordinates to (3, 1, 3 R–1). Then, it is pretty easy to
check that point C in Fig. 1 will have the correct coordinates (3/
(–1), 3–1/(–1), 3 R–1). Now, from (4), we find

S (A  B1) = S (A  C) +S (C  B1)

RR
1

10 ln (3 ) ln 3
1

  


. (8)

Fig. 3. Transitions A to B, where B formally represents either B1 or B2 of Figs. 1 and 2, are shown in the T-S diagram. Two reversible routes exist, one via
ACB and the other via ADB. In either case, only one intermediate point (C or D) is considered.

S (A  B1) = S (A  C) +S (C  B1) (4)

and calculate the changes for the overall isochoric process. Like-
wise, the net change of entropy for the isobaric process A to B2
(see Fig. 1) has to be evaluated on the basis of (5), where

S (A  B2) = S (A  C) +S (C  B2) (5)

Thus, one isotherm and one adiabat are involved in the RP-
based approach. Further, we know that S = 0 for the adiabatic
path A  C.

The situations become much simpler via straightforward QSP.
Let us choose the isochoric A to B1 transformation. Since dV = 0
throughout, here dQ  dU and, U being a state function, the
question of reversibility during heat transfer becomes redundant.
Hence, we plainly write

B1 dQ rev
S =   ———

A T

B
V B AA

dU C T T
T

1

1
ln ( / )  V B AC P P

1
ln ( / ) (6)

On the other hand, the isobaric A to B2 transformation takes
advantage of dp = 0, and hence V dp = 0, throughout. The
identification dQ   dH thus follows. Again, H being a state
function, the question of whether dQ  dQrev becomes
superfluous. Consequently, we are allowed to proceed as
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This is the RP result. Proceeding via QSP, from (6), we obtain
straightforwardly

S = CV ln 3. (9)

One may now use the definition of , along with the known ideal-
gas relation, viz.,

 = CP /CV ,  R =  CP – CV . (10)

Putting (10) in (8), the equivalence of (8) with (9) is immediately
established.

Similarly, starting from the same point A at (1, 1, R–1), suppose
the isobaric process to B2 changes coordinates to (1, 3, 3 R–1).
This will keep C at the same place as before in the p-V diagram.
In this case, therefore, we find from (5) that

S (A  B2) = S (A  C) +S (C  B2)

RR /( 1)0 ln 3 ln 3
1

  
  

  . (11)

This RP result should be compared now with the QSP outcome
in (7). The latter yields directly

S = CP ln 3. (12)

Employing (10), one can easily check that (11) agrees with (12).
It is thus clear that isochoric and isobaric processes are neat

examples of QSP that are not RP (and neither IP), and they
provide simpler routes to calculate S (system) exactly. In both
the cases, we have employed D-III to our advantage. Hence, D-
III is obeyed in at least two situations for QSP that are distinctly
not RP. We now need to explore how far these two independent
QSP fare in respect of D-IV. To achieve this end, one requires
S (surroundings), and so we proceed as follows.

Consider the RP along A C  B1 [cf. Fig. 1]. The quanti-
ties of interest emerge as

1 – 3 – 2
W (A C) = ——— = ———; U (A C  B1)

 – 1  – 1

= U (A C) + 0 = –W (A C). (13)

Further, we get

– 2 3
Wrev (A C  B1) = ——— + ——— ln 3;

 – 1  – 1

3
Qrev (A C  B1) = ——— ln 3. (14)

 – 1

The expression for S (system) is already found in (8). We shall
now use these findings in (13) and (14) to obtain the value of Q

(QSP). For the QSP A  B1, W = 0. So, it follows that

U (A B1) = U (A C)

2
= Wrev (A C) = ——— = Q (QSP). (15)

 – 1

It may be emphasized here that the RP route has been chosen
because QSP alone cannot estimate Q or U for the direct path
A  B1. Anyway, by energy conservation, this heat Q (QSP) in
(15) is taken from the surroundings. But, unlike the RP where
heat is taken from a single reservoir at a fixed temperature via
the C to B1 path, lesser amount of total heat Q (QSP) is
abstracted by the system from an infinite number of reservoirs
at varying temperatures along A  B1. Therefore, in applying
(1) to evaluate S (surroundings), we need some kind of
averaging for the T-part. One particular way that we have found
useful reads as

B1 dQ
S  (surroundings) =   ——

A T

R

R
dT

R R

1

1

3
1 1
1 1(QSP)

3



 
 

 Q
T

R ln 3
1




  (16)

Notably, a uniform averaging of the ‘1/T’-term has been used in
arriving at (16). As a result, we see that (16) is exactly the same
as (9) in magnitude, but opposite in sign. This specific avera-
ging scheme has thus the advantage of revealing that D-IV can
be true also for an isochoric QSP.

Consider next the RP [cf. Fig. 1] along the route A   C 
B2. The quantities W and U now turn out as

1 – 3 – 2
W (A C) = ——— = ———; U (A C  B2)

 – 1  – 1

= U (A C) + 0 = –W (A C). (17)

Results in (17) are same as those in (13). In addition, we find

– 2 3
Wrev (A C  B2) = ——— + ——— ln 3;

 – 1  – 1

3
Qrev (A C  B2) = ——— ln 3. (18)

 – 1

The expression for S (system) is already known [see (11)]. As
before, let us now use the estimates in (17) and (18) to get Q
(QSP) for the process A  B2. Here, one obtains directly W = 2
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from the embedded area. So,

U (A B2) = U (A C) + 0

2
= – Wrev (A C) = ——— .

 – 1

2 2
Q (QSP) = U + W = ——— +  2 = ——— . (19)

 – 1  – 1

Once more, assistance of the RP is required since QSP alone
cannot estimate Q or U for the direct path A  B2. This net
heat Q (QSP) in (19) is taken from an infinite number of reservoirs
at varying temperatures along A  B2. Therefore, in applying
(1) to evaluate S (surroundings), we need some kind of
averaging, as done above for the isochoric change. Again, we
choose the uniform averaging scheme for the same ‘1/T’-term.
This leads to

B2 dQ
S  (surroundings) =   ——

A T

R

R
dT

TR R

1

1

3
1 1

1 1(QSP)
3



 
 

 Q

R ln 3
1

 


  (20)

For a second time, we note that (20) and (11) are same in
magnitude, but opposite in sign. Hence, D-IV is true also for the
isobaric QSP.

Let us note that we have taken advantage of an averaging
with a uniform distribution in both examples. For some variable
x with finite upper and lower limits set at x1 and x0 respectively,
such an average of a function G(x) is generally given by

x

x
G x G x dx

x x
1

01 0

1( ) ( )    
  . (21)

In case of the direct path A  B1, total heat Q = U (A  B1) is
abstracted from source via the intermediate-temperature
reservoirs placed along the line A  B1 at varying T-values.
During this transition, p increases uniformly and, at any point
above A, the rise in pressure alone dictates the increase in T.
The uniform averaging scheme is thus justified. Justification for
the uniform distribution for the isobaric case A  B2 rests on a
similar reasoning. Here, V rises uniformly and, at any point at
the right of A, the expansion in volume alone dictates the growth
in T. Hence, T rises uniformly in either situation.

3.6. Additional remarks on reversibil ity

Results of the last two subsections show that D-III applies to
both the isochoric and isobaric QSP beyond doubt. Besides, a
specific averaging in the variable-temperature cases ensures
the validity of D-IV as well in these two situations. Coupled with
our observations in Sec. 3.3, it can be safely said that all the
definitions of reversibility [cf. Sec. 2] are put forward to distin-
guish an RP from an IP only; the case of a QSP is different, and
the more so for the two special QSP chosen here.

4. Independent quasi-static processes

The discussion so far has probably made it clear that pro-
cesses like A  B1 and A  B2 in Fig. 1, or those like B1  A
and B2  A in Fig. 2 are QSP proper. They have not been im-
ported to practically justify some RP. It is also now transparent
that these two QSP are quite handy in calculating entropy
changes for the system, though they are unable to provide U.
So, we assert that S (system) calculations for any change of
coordinates in the p-V diagram could be performed via equiva-
lent quasi-static paths, instead of the traditional ‘equivalent
reversible paths’ idea. Here, a few changes are considered to
estimate S (system) via both the above routes to justify our
assertion.

4.1. Isotherms and adiabats

Let us start with Fig. 4 where a pure isotherm A  B1 and
another pure adiabat A  B2 are chosen as two independent
RP. Point A is taken at (3, 1, 3 R–1). Coordinates of points B1 and
B2 are chosen respectively at (2, 3/2, 3 R–1) and (1, 31/, 31/

R–1). Then, the following answers are found for the RP:

S (A  B1) = R ln (3/2) ;S (A  B2) = 0. (22)

Consider now the QSP route A  C1  B1 in place of the re-
versible isotherm. Point C1 stays at (2, 1, 2 R–1). It’s an isochore-
isobar combination that yields

S (A  B1) = S (A  C1) +S (C1  B1)
= CV ln (2 / 3)  + CP ln (3 / 2)
= (CP – CV) ln (3 / 2)  = R ln (3 / 2) . (23)

The agreement of this estimate with (22) is evident. Similarly, by
means of another such combination, viz., the QSP route A 
C2  B2, we can replace the reversible adiabat. Using C2 at (1,
1, R–1), which is fairly easy to obtain, results emerge as

S (A  B2) = S (A  C2) +S (C2  B2)
= CV ln (1 / 3)  + CP ln (31/)

= (CP / – CV) ln 3 = 0. (24)
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Again, the outcome is exact [cf. (22)].

4.2. An arbi trary change

Our next example will focus on the process A  B, depicted

in Fig. 5. The state coordinates are so chosen that A rests at (2,
1, 2 R–1) and B at (1, 4, 4 R–1). As before, there is a reversible
route A  C  B where C lies on (2 (2–1)/(–1), 2 –1/(–1), 4 R–1).
This may be quickly verified. Using this RP road, the entropy

Fig. 4. Reversible processes A to B1 (isothermal) and A to B2 (adiabatic) are replaced by quasi-static processes AC1B1 and AC2B2, respectively, to show
their equivalence in respect of S calculations.

Fig. 5. A more general transformation A to B, neither isochoric nor isobaric, is chosen to demonstrate how the two distinctly different paths ACB (rever-
sible) and AEB (quasi-static) agree when S (system) is estimated.
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change is calculated as

S (A  B) = S (A  C) +S (C  B)
(2 – 1)

= 0 + R ln 2 (2–1) /(–1) = ———— R ln 2
( – 1)

= (2CP – CV) ln 2. (25)

However, there also exists another QSP route to reach B, viz.,
A  E  B, which is an isochore-isobar combination. The point
E stays at (1, 1, R–1). Therefore, one should be able to arrive at
the same result for S (system) as found in (24). We check it
below [see (9) and (12)]:

S (A  B) = S (A  E) +S (E  B)
= – CV ln 2 + CP ln 4 = (2CP – CV) ln 2. (26)

The matching is, once again, precise.

4.3. Equivalent quasi-static paths

The adequacy of equivalent quasi-static paths should now
be transparent, as long as we are interested in evaluating only
S (system). In case of an RP, Fig. 3 shows how two mutually
perpendicular lines in the T-S diagram allow us to join any two
given points, the initial and final states of a system. They are
very similar to unit vectors  i j , 

 
 on a plane. In the p-V dia-

gram, one should likewise choose an isotherm and an adiabat,
but they are non-linear. In Fig. 5, with mutually perpendicular
dotted lines corresponding to isochore-isobar combination, we
indicate how any two points (states) in the p-V diagram may be
linked via QSP in order that S evaluations are simplified. The
idea is akin to the use of unit vectors  i j , 

 
 on a plane, as

mentioned above in the RP context.

5. Conclusions

To summarize, the present work is intended to highlight the
status of QSP in elementary thermodynamics. While it is known
that any RP needs a QSP at the conceptual level, our analysis
has established that a QSP can play a bigger role. Particularly,
isochoric and isobaric QSP do possess independent significance.
They are neither RP nor IP.

We have further noted that the definitions D-I to D-IV are
meant to differentiate an RP from an IP only. Status of the QSP
is different. Specifically, it has turned out that both D-I and D-II

need some modifications for a composite RP, e.g., in presence
of one intermediate point. The case is discussed at length in
Sec. 3.3, supported by Figs. 1–3. Later, in Sec. 3.6, it has been
found that D-III is also unable to distinguish a QSP from an RP,
and so is D-IV, at least when we stick to a particular (uniform)
averaging scheme. Incompleteness and non-uniqueness in each
definition is thus brought to light.

It emerged from our analysis that two different states can
always be connected by using two mutually perpendicular QSP
lines in the p-V diagram. The spirit is very much the same that
one maintains for RP in the T-S diagram. Moreover, we can make
profitable use of these mutually perpendicular isochore-isobar
QSP lines in calculating entropy changes for a system, as Figs.
4 and 5 reveal. Indeed, this idea of employing ‘equivalent quasi-
static paths’ in S (system) calculations may count as the grea-
test advantage of such independent QSP, as sketched in Sec.
4. Admittedly, however, the notion of ‘equivalent reversible paths’
has a wider appeal because it offers both S (system) and U.

Finally, our demonstrative calculations have involved only
the ideal gas. While one may argue that such a choice is quite
restrictive, the cases worked out here should at least act as proper
counter-examples to denounce the uniqueness of certain defini-
tions and paradigms.

Dedication

This write-up is dedicated to the memory of my esteemed
senior colleague, Dr. S. S. Z. Adnan, of the Department of Che-
mistry, University of Calcutta.
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